

Mathematics: Units 2C and 2D Formula sheet

Number and algebra: Estimation and calculation

For any number *a* and integers *m* and *n*,

$$a^m a^n = a^{m+n}$$

 $a^m \div a^n = a^{m-n}$

Space and measurement: Measurement

Triangle: Area = $\frac{1}{2} \times base \times height$

Parallelogram: Area = base × height

Trapezium: Area = $\frac{1}{2}(a+b) \times$ height, where *a* and *b* are the lengths of the parallel sides

In a right triangle:	sin <i>A</i> – opposite	$\cos\theta = \frac{\text{adjacent}}{1}$	$\tan \theta = \frac{\text{opposite}}{\theta}$
	hypotenuse	hypotenuse	adjacent

In any triangle ABC,

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$
 Area = $\frac{1}{2}ab\sin C$

$$a^2 = b^2 + c^2 - 2bc\cos A$$

$$\cos A = \frac{b^2 + c^2 - a^2}{2bc}$$

Space and measurement: Coordinate geometry

Gradient of line, *m*, through the points (x_1, y_1) and (x_2, y_2) is given by $m = \frac{y_2 - y_1}{x_2 - x_1}$.

Distance, *d*, between the points (x_1, y_1) and (x_2, y_2) is given by $d = \sqrt{(y_2 - y_1)^2 + (x_2 - x_1)^2}$. Lines are perpendicular if $m_1 \times m_2 = -1$

Chance and Data: Quantify chance

 $P(A) + P(\overline{A}) = 1$

Note: Any additional formulas identified by the examination panel as necessary will be included in the body of the particular question.